Тормозной путь. от чего он зависит, как определяется

Виды торможения автомобиля

Говоря о торможении, различают 6 основных видов:

  • Частичное торможение. Такой вид торможения предполагает постепенное снижение скорости, без полной остановки ТС.
  • Полное торможение. Торможение данного вида аналогично предыдущему, с одной лишь разницей, снижение скорости происходит вплоть до остановки ТС.
  • Стояночное торможение. В данном случае происходит полная фиксация автомобиля в одном положении при помощи ручника (ручного тормоза). Например, если требуется временно оставить автомобиль на парковке, у вокзала, близ магазина, у обочины и т.д.
  • Аварийное торможение. Такой вид торможения используется только в экстренных случаях, когда не срабатывают основные системы регулировки скорости движения. Например, при неисправностях тормозной системы или при наличии других повреждений. В таком случае для торможения можно использовать отдельные элементы конструкции автомобиля – обшивку дверей, крылья, мягкие части кузова, которые уменьшат силу удара при возможном столкновении.
  • Служебное торможение. Такой вид торможения может применяться в любых штатных условиях вождения, с частичной или полной остановкой ТС. При служебном торможении процесс снижения скорости происходит полностью под контролем водителя, с учетом способа торможения и безопасности всех пассажиров.
  • Экстренное торможение. Такой вид применяется только в экстренных ситуациях с целью предотвращения возможных ДТП. Основная цель экстренного торможения – максимально быстро и безопасно снизить скорость с учетом воздействия внешних факторов.

Диагностика тормозной системы

Для диагностирования общей эффективности тормозной системы зачастую применяются специальные стенды.

Наибольшее распространение получили барабанные стенды, позволяющие определить усилие, создаваемое тормозной системой на каждом колесе и время срабатывания системы.

Затем исходя из показаний, производится обслуживание и ремонт.

Народные методы диагностики тормозов.

Одним из таких методов является замер тормозного пути. Именно этот метод положен в основу площадочного стенда.

Суть метода сводиться к движению авто с определенной скоростью по ровной площадке с последующим экстренным торможением.

После этого замеряется тормозной путь и на основе замеров и сравнения их с номинальным значением, указанным в тех. документации к авто, определяется эффективность тормозов.

К примеру, на ВАЗ 2109 в полностью загруженном состоянии тормозной путь на сухой ровной поверхности при скорости 80 км/ч должен составлять примерно 38 м.

Значение меньше или таковое указывает на отличную работу тормозов, большее значение сигнализирует о проблемах в работе.

Недостатком этого метода является невозможность определения эффективности работы тормозов на каждом колесе и время срабатывания привода.

Также на показания в значительной мере влияют дорожные условия при проведении диагностики (мокрая поверхность дороги или сухая и т.д.).

Уникальная конструкция суппорта болидов «Королевских гонок»

Суппорт, несмотря на схожую конструкцию с суппортами обычных автомобилей, имеет свои уникальные особенности.

У непосредственных тормозных механизмов, прижимающих колодки к дискам (суппортам), есть несколько уникальных конструкторских решений, делающих их крайне эффективными.

Если присмотреться к ним, то окажется, что поршни внутри имеют разный размер. Они увеличиваются в диаметре по направлению движения (вращения) диска, и для этого есть веская причина. Если бы все поршни были одинакового размера (как на обычных автомобилях), то колодка под сверхнагрузками изнашивалась бы больше на одном своем конце, и меньше на другом, уменьшая свой срок службы и снижая эффективность торможения, также увеличивая дисбаланс при торможении колес во время срабатывания тормозных механизмов.

Схема дисковых тормозов

Дисковый тормозной механизм состоит из тормозного диска, который закреплен на колесе и вращается вместе с ним, двух неподвижных колодок, которые установлены внутри суппорта по обе стороны от тормозного диска.

Суппорт крепится на кронштейне. На суппорте, в его пазах также крепятся рабочие цилиндры, которые во время торможения прижимают тормозные колодки к диску.

Тормозные колодки после отпускания педали тормоза возвращаются в исходное положение пружинными элементами.

Тормозной диск в процессе торможения, под воздействием сил трения сильно нагревается. Охлаждение тормозных дисков происходит за счет конвективного омовения потоком воздуха. Для улучшения отвода накапливаемого диском тепла в нем делаются специальные отверстия и в этом случае диск является вентилируемым. Для еще большего повышения эффективности процесса торможения и нивелирования последствий перегрева диска на спортивных и скоростных автомобилях устанавливают тормозные диски, изготовленные с применением специальных керамических материалов.

Тормозной привод служит для обеспечения управления всеми составляющими тормозного механизма. В современных тормозных системах применяются такие типы тормозных приводов: механический, пневматический, гидравлический, электрический и комбинированный.

Механический привод применяется в стояночной тормозной системе (ручник). Механический привод — это система тяг, тросов и рычагов, которые служат для соединения рычага стояночного тормоза с тормозным механизмом задних колес автомобиля.

Существует также система механического привода стояночного тормоза, приводимая в действие с помощью ножной педали.

Гидравлический привод является наиболее распространенным типом привода в рабочей системе тормозов. Конструкция гидравлического привода включает: педаль тормоза, главный тормозной цилиндр, вакуумный усилитель тормозов, рабочие цилиндры, шланги и трубопроводы.

Принцип работы гидравлического привода тормозов описан чуть выше.

Для обеспечения надежности тормозной системы работа гидравлического привода организуется по двум (как правило) независимым контурам. При поломке одного контура, его функции берет на себя другой контур. Рабочие контуры могут дублировать функции друг-друга либо выполнять часть какую-то часть функций второго контура. Возможно также и выполнение каждым контуром строго своих функций. Наиболее распространенной является диагональная схема работы контуров.

Пневматический привод используется преимущественно в тормозной системе грузовых автомобилей.

Комбинированный тормозной привод, как следует из названия, представляет собой сочетание (комбинацию) двух видов привода (электропневматический, например).

Далее скажем пару слов о дополнительных системах, которые делают автомобиль более безопасным…

Анти-блокировочная система ABS, предназначается для предотвращения блокирования колес автомобиля во время очень сильного нажатия на педаль тормоза, что позволяет избежать движения юзом, и сохранить контроль над автомобилем. В состав системы ABS (Antilock Brake System) входят три элемента – это датчик измерения скорости, который устанавливается на каждом колесе, модулятор давления тормозной жидкости и блок управления системой ABS.

Система TCS создана на основе системы ABS и предназначена для предотвращения пробуксовывания колес во время слишком резкого старта или на скользкой дороге. Система (Traction Control System) существует и под названиями: ASR, ASC, ETS. Она отличается от системы ABS только наличием модифицированного блока управления.

ESP. Еще одной полезной системой, которая может устанавливаться на автомобиле, является система электронной стабилизации колес ESP. Эта система работает в повороте, причем его угол и скорость не имеют значения, при возникновении заноса задней оси автомобиля, ESP (Electronic Stability Program) обеспечивает подтормаживание переднего наружного колеса. В такой ситуации образуется стабилизирующий момент, возникающий между колесами автомобиля, который возвращает движущийся автомобиль на безопасную траекторию.

Снятие и установка передних колодок

Перед началом работ приготовьте следующие инструменты:

  • Ключи на 13 и на 15;
  • Очиститель деталей тормозных систем (обычная тряпка не сможет полностью удалить грязь и остатки отработавшей смазки);
  • Отвертка плоская;
  • Высокотемпературная смазка.

Порядок действий при замене деталей таков:

  • Зафиксируйте автомобиль на месте, затянув стояночный тормоз. Выключите зажигание. Поднимите домкратом передок Весты;
  • Приступите к снятию колеса. Снимите колпак, ослабьте болты на один оборот. Продолжайте это действие по кругу со всеми болтами;
  • Снимите крышку бачка тормозной жидкости и откачайте несколько миллилитров. Это не даст жидкости «попасть под давление». Тормозной цилиндр утопите вовнутрь отверткой;
  • Ключом на 15 придержите направляющий палец суппорта, а ключом на 13 снимите два болта. Не дайте свободной части суппорта упасть на землю;
  • Подденьте внешнюю колодку отверткой и аккуратно достаньте ее. Тем же образом достаньте внутреннюю колодку;
  • Пружинный фиксатор, отвечающий за равномерность износа, придется почистить, а затем заново покрыть смазкой;
  • Поставьте новую деталь– сначала внешнюю, потом внутреннюю;
  • Почистите направляющие, также покройте их смазкой;
  • Поставьте все детали обратно;
  • Затяните болты крепления, поставьте колесо, по часовой стрелке по одному вращению зафиксируйте все болты.

Какие факторы влияют на торможение и тормозной путь?

Выше мы уже писали, что на длину тормозного пути влияют множество факторов. Предлагаем рассмотреть их подробнее.

Скорость

Это ключевой фактор. При этом имеется в виду не только скорость езды машины, но и скорость реакции водителя. Считается, что реакция у всех примерно одинаковая, но это не совсем так. Играет роль опыт вождения, состояние здоровья человека, употребление им медикаментов и т.д. Также, многие «лихачи» пренебрегают законом и отвлекаются на смартфоны за рулем, что, в итоге, может привести к катастрофическим последствиям.

Помните еще один важный момент. Если скорость автомобиля увеличивается в два раза, длина его тормозного пути растет в 4 раза! Здесь пропорция 1:1 не работает.

Дорожные обстоятельства

Несомненно, на длину тормозной линии влияет состояние дорожного покрытия. На обледенелой или мокрой трассе она может вырасти в разы. Но это далеко не все факторы. Следует также опасаться опавших листьев, на которых шины прекрасно скользят, трещин на покрытии, ям и так далее.

Шины

Качество и состояние резины сильно влияют на длину тормозной линии. Зачастую, более дорогие шины обеспечивают лучшее сцепление авто с дорожным покрытием

Обратите внимание, если глубина протектора стерлась больше допустимого значения, то резина утрачивает способность отводить достаточное количество воды при движении по мокрой дороге. В итоге, вы можете столкнуться с такой неприятной штукой, как аквапланирование — когда машина теряет сцепление с дорогой и становится полностью неуправляемой

Чтобы сократить тормозной путь, рекомендуется поддерживать в покрышках оптимальное давление. Какое именно — на этот вопрос вам ответит автопроизводитель. Если значение будет отклоняться в большую или меньшую сторону, линия торможения будет увеличиваться.

В зависимости от коэффициента сцепления покрышек с дорожным покрытием этот показатель будет разным. Вот сравнительная таблица зависимости тормозного пути от качества дорожного покрытия (легковой автомобиль, покрышки которого имеют средний коэффициент сцепления):

60км/ч. 80 км/ч. 90 км/ч.
Сухой асфальт, м. 20,2 35,9 45,5
Мокрый асфальт, м. 35,4 62,9 79,7
Заснеженная дорога, м. 70,8 125,9 159,4
Гололед, м. 141,7 251,9 318,8

Конечно, эти показатели относительны, но они ярко иллюстрируют, насколько важно следить за состоянием автомобильной резины

Техническое состояние машины

Автомобиль может выезжать на дорогу только в исправном состоянии — это аксиома, не требующая доказательств. Для этого проводите плановую диагностику своего авто, своевременно делайте ремонт и меняйте тормозную жидкость.

Помните, что стертые тормозные диски могут в два раза увеличить линию торможения.

Отвлечение внимания на дороге

Во время движения автомобиля водитель не имеет права отвлекаться от управления ТС и контроля над дорожной ситуацией. От этого зависит не только его безопасность, но жизни и здоровье пассажиров, а также других участников движения.

Вот что происходит в мозгу водителя при возникновении экстренной ситуации:

  • оценка дорожной ситуации;
  • принятие решения – тормозить или маневрировать;
  • реагирование на ситуацию.

В зависимости от врожденных способностей водителя средняя скорость реакции составляет от 0,8 до 1,0 секунды. Этот параметр касается экстренной ситуации, а не почти автоматического процесса при замедлении на знакомом участке дороги.

Многим этот временной отрезок кажется незначительным, чтобы на него обращать внимание, однако игнорирование опасности может привести к фатальным последствиям. Вот таблица зависимости реакции водителя и пройденного автомобилем пути:

Скорость автомобиля, км/ч. Расстояние до момента нажатия на тормоз (время остается одинаковым – 1 сек.), м.
60 17
80 22
100 28

Как видно, даже кажущаяся незначительной секунда промедления может привести к печальным последствиям. Вот почему каждому автомобилисту никогда нельзя нарушать правило: «Не отвлекайся и придерживайся скоростного режима!».

Отвлекать водителя от управления могут разные факторы:

  • мобильный телефон – даже просто посмотреть, кто звонит (при разговоре по телефону реакция водителя идентична реакции человека в состоянии легкого алкогольного опьянения);
  • рассматривание рядом проезжающего автомобиля или наслаждение красивыми пейзажами;
  • пристегивание ремня безопасности;
  • употребление пищи за рулем;
  • падение незакрепленного видеорегистратора или мобильного телефона;
  • выяснение отношений водителя и пассажира.

На самом деле невозможно составить полный список всех факторов, которые могут отвлечь водителя от управления. Ввиду этого каждому следует быть внимательным к дороге, а пассажирам будет полезна привычка не отвлекать водителя от управления.

Типы тормозных механизмов, применяемые в автомобилях

На подавляющем большинстве авто установлены тормозные механизмы фрикционного типа, работающие по принципу сил трения. Устанавливаются они непосредственно в колесе и конструктивно подразделяются на:

  • барабанные;
  • дисковые.

Существовала традиция устанавливать барабанные механизмы на задние колеса, а дисковые на передние. Сегодня в зависимости от модели могут ставиться одинаковые типы на все четыре колеса – или барабанные, или дисковые.

Устройство и работа барабанного тормозного механизма

Устройство системы барабанного типа (барабанный механизм) состоит из двух колодок, тормозного цилиндра и стяжной пружины, размещенных на щите внутри тормозного барабана. На колодки наклепаны или приклеены фрикционные накладки.

Тормозные колодки своими нижними концами шарнирно закреплены на опорах, а верхними – под воздействием стяжной пружины – упираются в поршни колесного цилиндра. В незаторможенном положении между колодками и барабаном имеется зазор, обеспечивающий свободное вращение колеса.

Необходимо отметить, что в приведенной конструкции износ передних и задних колодок происходит неравномерно. Дело в том, что фрикционные накладки передней по ходу движения колодки в момент торможения при движении вперёд прижимаются к барабану всегда с большей силой, чем задние. Как выход, рекомендуется менять колодки местами через определенный срок.

Тормозной механизм дискового типа

Устройство дисковых тормозов состоит из:

  1. суппорта, закрепленного на подвеске, в теле которого размещены наружный и внутренний тормозные цилиндры (может быть один) и две тормозные колодки;
  2. диска, который закреплен на ступице колеса.

Как работают тормоза в автомобиле

Картинка описание: Когда ваша нога нажимает педаль тормоза, тормозная жидкость в тормозной системе выжимается из узкого цилиндра в более широкий цилиндр. Эта система известна как гидравлическая система. Это позволяет значительно увеличить силу тормозного вашего усилия. 

Теория…

Представьте себе, сколько вам нужно сил, чтобы остановить быстроходную машину. Простое нажатие педали тормоза не создало бы достаточной силы, чтобы активировать все четыре тормоза так, чтобы быстро остановить ваш автомобиль. Вот почему тормоза используют гидравлику: систему заполненных тормозной жидкостью трубок, которые и увеличивают ваше тормозное усилие. Также благодаря гидравлике тормозные усилия могут передаваться легко из одного места в другое за короткий срок. 

Когда вы нажимаете на педаль тормоза, ваша нога, по сути, перемещает рычаг, который заставляет сдвинуть поршень в длинном узком тормозном цилиндре (главный тормозной цилиндр), который в свою очередь начинает двигать гидравлическую жидкость (тормозная жидкость) в сторону узкой трубки расположенной на конце тормозного цилиндра.

К этой трубке, как правило, подключены такого же диаметра трубки, идущие на каждый тормоз автомобиля. Далее тормозная жидкость по узким трубкам попадает в более объемные цилиндры, расположенные на колесах.

Поскольку тормозные цилиндры, расположенные на каждом колесе, намного больше, чем цилиндр, расположенный в тормозной системе сразу после педали тормоза, сила, которую вы изначально применили к педали тормоза, значительно увеличивается. В результате эта сила и сжимает тормозные колодки в каждом тормозе колеса. 

На практике…

  1. 1. Ваша нога нажимает на педаль тормоза.
  1. 2. Когда педаль движется вниз, она толкает рычаг, который соединен с поршнем главного тормозного цилиндра.
  1. 3. Рычаг толкает поршень (синий на картинке) в узкий цилиндр, который заполнен гидравлической тормозной жидкостью (обозначена красным цветом). Когда поршень перемещается в цилиндре, он сжимает тормозную жидкость и толкает ее в узкое отверстие, расположенное в конце цилиндра, к которому подсоединена трубка. Это происходит примерно так же, как ручной насос выжимает воздух из цилиндра в тонкий шланг. 
  1. 4. В результате образовавшегося давления тормозная жидкость попадает в длинную тормозную магистраль, состоящую из тормозных трубок, которые подходят к каждому колесу. В результате нагнетенного давления главным тормозным цилиндром, тормозная жидкость в итоге достигает каждого колеса. 
  1. 5. Далее жидкость под давлением попадает в тормозные цилиндры, расположенные в колесах, которые имеют больший размер, чем главный тормозной цилиндр (цилиндр в колесе обозначен, синим цветом). 
  1. 6. Когда жидкость попадает в тормозной цилиндр, имеющий больший объем по сравнению с главным тормозным цилиндром, то сильно увеличивается тормозное усилие из-за разницы объемов цилиндров в тормозной системе.
  1. 7. В результате увеличенного давления жидкости поршень в тормозном цилиндре колеса зажимает тормозную колодку, прижимая ее к тормозному диску / барабану.
  1. 8. В результате трения тормозной колодки и тормозного диска начинается замедление колесного диска, что в конечном итоге и останавливает машину.

Наш простой пример показывает основной принцип работы гидравлической тормозной системы; на практике все немного сложнее.

На самом деле педаль тормоза фактически управляет четырьмя отдельными гидравлическими тормозными линиями, идущие на все четыре колеса. В нашем же примере мы показываем принцип работы тормозов на одном колесе автомобиля.

Для безопасности, как правило, во всех автомобилях используется два отдельных контура гидравлических тормозов. Это необходимо на тот случай, если вдруг из-за каких-то неисправностей вышел из строя один тормозной контур. В этом случае второй контур всей тормозной системы будет по-прежнему функционировать.  

Как увеличить интенсивность замедления

Из вышесказанного стало понятно, что называется тормозным путем и от чего зависит этот показатель. Однако возможно ли сократить расстояние, которое необходимо для остановки автомобиля? Возможно! Для этого существует два пути – поведенческий и технический. Идеально, если водитель сочетает оба способа.

  1. Поведенческий метод – сократить тормозной путь можно, если выбирать небольшую скорость движения на скользких и мокрых дорогах, учитывать степень загруженности машины, грамотно рассчитать тормозные возможности авто в зависимости от его состояния и модельного года. Так, «москвич» 1985 года разработки не сможет тормозить столь же эффективно, как современный «Hyundai Solaris», не говоря уж о более респектабельных и технологичных моделях.
  2. Технический метод – метод усиления тормозных возможностей, основанный на повышении мощности тормозной системы и использовании вспомогательных механизмов. Производители современных ТС активно применяют такие способы улучшения тормозов, оснащая свою продукцию антиблокировочными системами, системами помощи при торможении, используя более эффективные тормозные диски, колодки.

Следует помнить, что сокращение времени, необходимого для остановки – один из способов обеспечения безопасности поездки. Поэтому каждый водитель должен постоянно следить за техническим состоянием своего «железного коня», своевременно обслуживать и ремонтировать систему торможения

Помимо этого, важно выбирать скорость движения с учетом окружающей обстановки: времени суток, состояния дороги, модели автомобиля и прочее

Каждый водитель хоть раз да оказывался буквально в паре секунды от аварии, когда жизненно необходимо успеть затормозить. Однако встать, как вкопанный по команде автомобиль не может. Расстояние, которое он проедет с момента начала торможения до полной остановки и называют тормозным путём. Уметь прикинуть тормозной путь нужно, чтобы он всегда был меньше, чем расстояние до оказавшейся на пути помехи.

Длина пути торможения зависит от множества разных факторов. Тут и реакция водителя, и уровень работы тормозной системы автомобиля, и внешние факторы, вроде материала трассы и погодных условий. Ну и конечно, решающую роль играет скорость машины на момент торможения. Появляется вопрос — как рассчитать тормозной путь автомобиля при всех этих условиях? Для общих расчётов достаточно трёх главных факторов — тормозного коэффициента (Кэ), скорости движения (V) и коэффициента сцепления (Фс) с трассой.

Формула для расчёта тормозного пути автомобиля

Формула из таблицы, вычисляющая длину тормозного пути, выглядит так: S=Кэ*V*V/(254*Фс). Тормозной коэффициент у обычного легкого автомобиля равняется единице. Коэффициент сцепления на сухой поверхности будет равен 0,7. Для примера, возьмём случай, когда машина движется по сухой трассе со скоростью в 60 км/ч. Тогда длина тормозного пути будет равна 1*60*60/(254*0,7)=20,25 метра. На льду же (Фс=0,1) торможение продлится в семь раз дольше — 141,7 метра!

По результату видим, как сильно длина тормозного пути автомобиля из таблицы зависит от состояния трассы и погодных условий.

Когда и как производится замер

Расчет тормозного пути может потребоваться в следующих случаях:

  • технические испытания транспортного средства;
  • проверка возможностей машины после доработки тормозов;
  • криминалистическая экспертиза.

Коэффициент сцепления с дорогой изменяется в зависимости от состояния покрытия и определяется по следующей таблице:

Состояние дороги Фс
Сухая 0.7
Мокрая 0.4
Снег 0.2
Лед 0.1

Коэффициент Кэ является статической величиной и составляет единицу для всех наиболее распространенных легковых транспортных средств.

В таблице указано сколько метров машина будет продолжать движение до полной остановки. Следует учитывать, что в расчет не берутся никакие иные показатели (повороты, выбоины на дороге, встречный поток и т.д.). Сомнительно, что в реальных условиях на обледенелой дороге, автомобиль сможет проскользить километр и не встретить столб или отбойник.

Скорость Сухо Дождь Снег Лед
км/ч метры
60 20,2 35,4 70,8 141,7
70 27,5 48,2 96,4 192,9
80 35,9 62,9 125,9 251,9
90 45,5 79,7 159,4 318,8
100 56,2 98,4 196,8 393,7
110 68 119 238,1 476,3
120 80,9 141,7 283,4 566,9
130 95 166,3 332,6 665,3
140 110,2 192,9 385,8 771,6
150 126,5 221,4 442,9 885,8
160 143,9 251,9 503,9 1007,8
170 162,5 284,4 568,8 1137,7
180 182,2 318,8 637,7 1275,5
190 203 355,3 710,6 1421,2
200 224,9 393,7 787,4 1574,8

Мы нашли интересный калькулятор, который не только рассчитывает показатель в зависимости от скорости и состояния дороги, но и наглядно показывает весь процесс. Находится здесь.

Стояночная тормозная система легковых автомобилей

Предназначение ручного, или стояночного тормоза — это удержание авто на стоянке, даже под определённым уклоном. По-простому, чтобы он не уехал самостоятельно после парковки. Также его называют парковочным тормозом, опытные водители часто называют просто ручником. В экстренной ситуации, при поломке основной системы торможения ручник допустимо использовать для уменьшения скорости и остановки транспорта. Стояночный тормоз приводится в действие посредством рукоятки усилием руки водителя, иногда ногой с помощью специальной педали (ножной стояночный тормоз). Чтобы обеспечить эффективную работу парковочного тормоза оптимально располагать его тормозные элементы на наиболее нагруженной оси либо нескольких осях при необходимости. В основном это задняя ось транспортного средства. Тип привода — механический, рукояткой водитель натягивает тросик, он притягивает колодки к барабану либо диску посредством тягового механизма. Также встречается электропривод, от водителя требуется только нажать на соответствующую кнопку.

Ход работы по замене тормозных колодок Лада Веста Кросс СВ

По времени работа по замене передних тормозных колодок занимает около 15 минут на одну сторону.

1. Для начала нужно поставить машину на ручник и поднять переднюю часть домкратом, чтобы снять колесо.

2. Плоской отверткой утапливаем поршень тормозного цилиндра.

3. Берем пару ключей — рожковый на 15″ и накидной на 13″. Придерживая рожковым ключом на 15″ направляющую суппорта, отворачиваем ключом на 13″ болт. И выкручиваем его полностью. Тоже самое делаем и со вторым болтом. После чего часть суппота останется у нас в руках.

4. Поддеваем отверткой сначала внешнюю колодку и вынимаем ее. Тоже самое делаем и с внутренней колодкой.

5. Далее необходимо очистить пружинный фиксатор колодок от грязи и смазать его специальной высокотемпературной смазкой.

6. Устанавливаем новые колодки в обратной последовательности.

7. Перед установкой суппорта рекомендуется промыть направляющие и смазать их тоже специальной смазкой.

8. Затягиваем болты крепления и ставим на место колесо. С другой стороны колодки меняются аналогичным образом.

Основные неисправности

Если исключить вероятный брак детали и низкое качество от производителя, то основная причина, по которой передние колодки на Лада Веста приходят в негодность – это износ. Они активно взаимодействуют с другими деталями тормозного механизма, и поэтому взгляд на характер повреждений фрикционных накладок даст понять, что в работе тормозной системы не так. Исправив эту ошибку, Вы увеличите срок службы не только колодок, но и всего механизма.

В характере неисправностей можно отметить:

  1. Равномерный износ — он проявляется в том, что фрикционный слой стерт равномерно, это показывает, что тормоза работают хорошо.
  2. Сильный износ фрикционного слоя, видны тормозные заклепки — это значит, что Вы слишком долго эксплуатировали «отслужившие свое» детали. Заклепки могли повредить диск, так что неплохо было бы, его осмотреть на наличие повреждений.
  3. Фрикционный слой по всему кругу стерт равномерно, но одна из сторон стерта сильнее другой — одна из деталей тормозной системы (направляющая или поршень) неправильно распределяют тормозное усилие. Поможет очистка всех «живых» запчастей и нанесение нового слоя смазки. Естественно, все придется поменять.
  4. Обе комплектующие изношены неравномерно, поверхности усеяна– неровностями и шероховатостями. Виной такому исходу – неисправность направляющих пальцев суппорта – они качаются, не выдают ровную траекторию движения. Придется почистить их, затем нанести смазку заново.
  5. Фрикционная накладка в трещинах — в этом случае «беду» вызывают сами тормозные диски – они изнашиваются неравномерно. Придется менять все.
  6. Неравномерный износ фрикционного слоя означает, что детали были установлены неправильно. Их придется поменять.

Выполнив визуальный осмотр повреждений, Вы сможете самостоятельно вынести вердикт поломке. А помимо этого есть еще несколько признаков, по которым можно узнать о неисправности передних колодок, сидя за рулем.

Скрип

Если при торможении спереди возникает скрип, то это значит, что колодка и диск «не состыковались». Такое случается, когда на замену оригинальной комплектующей был куплен дешевый аналог. Но не все так плохо – иногда этот аналог может прослужить долго, а реальной причиной окажется грязь, которая попала в подвижные детали, и уменьшает площадь соприкосновения подвижных частей.

Вибрация на скорости: что это

Вибрация на скорости появляется, когда колодки не подходят к дискам – существует некая несовместимость, которая не проявляется в работе «родных» деталей. Если же при торможении все же получается «полный контакт» этих деталей тормозного механизма, это значит, износ самих дисков ступицы не дает покоя, и их придется менять.

Схема дисковых тормозов

Дисковый тормозной механизм состоит из тормозного диска, который закреплен на колесе и вращается вместе с ним, двух неподвижных колодок, которые установлены внутри суппорта по обе стороны от тормозного диска.

Суппорт крепится на кронштейне. На суппорте, в его пазах также крепятся рабочие цилиндры, которые во время торможения прижимают тормозные колодки к диску.

Тормозные колодки после отпускания педали тормоза возвращаются в исходное положение пружинными элементами.

Тормозной диск в процессе торможения, под воздействием сил трения сильно нагревается. Охлаждение тормозных дисков происходит за счет конвективного омовения потоком воздуха. Для улучшения отвода накапливаемого диском тепла в нем делаются специальные отверстия и в этом случае диск является вентилируемым. Для еще большего повышения эффективности процесса торможения и нивелирования последствий перегрева диска на спортивных и скоростных автомобилях устанавливают тормозные диски, изготовленные с применением специальных керамических материалов.

Тормозной привод служит для обеспечения управления всеми составляющими тормозного механизма. В современных тормозных системах применяются такие типы тормозных приводов: механический, пневматический, гидравлический, электрический и комбинированный.

Механический привод применяется в стояночной тормозной системе (ручник). Механический привод — это система тяг, тросов и рычагов, которые служат для соединения рычага стояночного тормоза с тормозным механизмом задних колес автомобиля.

Существует также система механического привода стояночного тормоза, приводимая в действие с помощью ножной педали.

Гидравлический привод является наиболее распространенным типом привода в рабочей системе тормозов. Конструкция гидравлического привода включает: педаль тормоза, главный тормозной цилиндр, вакуумный усилитель тормозов, рабочие цилиндры, шланги и трубопроводы.

Принцип работы гидравлического привода тормозов описан чуть выше.

Для обеспечения надежности тормозной системы работа гидравлического привода организуется по двум (как правило) независимым контурам. При поломке одного контура, его функции берет на себя другой контур. Рабочие контуры могут дублировать функции друг-друга либо выполнять часть какую-то часть функций второго контура. Возможно также и выполнение каждым контуром строго своих функций. Наиболее распространенной является диагональная схема работы контуров.

Пневматический привод используется преимущественно в тормозной системе грузовых автомобилей.

Комбинированный тормозной привод, как следует из названия, представляет собой сочетание (комбинацию) двух видов привода (электропневматический, например).

Далее скажем пару слов о дополнительных системах, которые делают автомобиль более безопасным…

Анти-блокировочная система ABS, предназначается для предотвращения блокирования колес автомобиля во время очень сильного нажатия на педаль тормоза, что позволяет избежать движения юзом, и сохранить контроль над автомобилем. В состав системы ABS (Antilock Brake System) входят три элемента – это датчик измерения скорости, который устанавливается на каждом колесе, модулятор давления тормозной жидкости и блок управления системой ABS.

Система TCS создана на основе системы ABS и предназначена для предотвращения пробуксовывания колес во время слишком резкого старта или на скользкой дороге. Система (Traction Control System) существует и под названиями: ASR, ASC, ETS. Она отличается от системы ABS только наличием модифицированного блока управления.

ESP. Еще одной полезной системой, которая может устанавливаться на автомобиле, является система электронной стабилизации колес ESP. Эта система работает в повороте, причем его угол и скорость не имеют значения, при возникновении заноса задней оси автомобиля, ESP (Electronic Stability Program) обеспечивает подтормаживание переднего наружного колеса. В такой ситуации образуется стабилизирующий момент, возникающий между колесами автомобиля, который возвращает движущийся автомобиль на безопасную траекторию.

Химический состав тормозной жидкости, как подобрать тормозную жидкость по химическому составу?

Гликоли. Большинство тормозных жидкостей основано на различных соединениях гликолей (двухатомных спиртов). Хотя эти соединения используются для получения тормозных жидкостей, удовлетворяющих требования стандарта DOT 3. их превышенные гигроскопические свойств являются причиной относительно встрой абсорбции влаги, сопровождающейся снижением температуры кипения тормозной жидкости. При условии, если свободные гидроксилы частично связаны сложными эфирами с борной кислотой. >разуется высококачественная тормозная жидкость DOT 4 (или «DOT 4+», Super DOT 4»), которая, при взаимодействии с влагой, полностью ее нейтрализует. Поскольку снижение темпе­ратуры кипения тормозной жидкости DOT 4 за время ее эксплуатации происходит значительно медленнее по сравнению с жидкостью DOT 3, срок службы увеличивается.

Жидкости на основе минеральных масел (ISO 7308). Преимуществом тормозных жидкостей созданных на основе минеральных масел. является отсутствие у них гигроскопичности, поэтому температура кипения (при отсутствии абсорбции влаги не снижается. Минеральные и синтетические масла для тормозных жидкостей отбираются с особой тщательностью. Для обеспечения как можно меньшей зависимости вязкости от температуры в тормозную жидкость добавляются спе­циальные присадки.

Нефтяная промышленность, помимо топлив, также поставляет для тормоз­ных жидкостей различные присадки, улучшающие их свойства. Следует от­метить, что не рекомендуется в тормоз­ные системы, в которых в качестве тормозной жидкости применяются гликоли добавлять тормозные жидкости, соз­данные на основе минеральных масел (или наоборот), чтобы не допустить на­бухания эластомеров.

Силиконовые жидкости (SAE J 1705). Поскольку силиконовые жидкости, так­же как и минеральные масла, не абсор­бируют влагу, они в ряде случаев ус­пешно применяются в качестве тормоз­ной жидкости. Недостатками сили­коновых жидкостей являются сущест­венно более высокая сжимаемость и худшие смазывающие свойства, что ог­раничивает их применение в качестве рабочей жидкости во многих гидравли­ческих системах,

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
АвтоДиск
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector